
Algorithms
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

Important Dates

 Go over important dates

© 2021 Arthur Hoskey. All
rights reserved.

Today’s Lecture

 Overview of Big O Notation

© 2021 Arthur Hoskey. All
rights reserved.

Computational Complexity

 Computational Complexity – Area of Computer Science that
focuses on the amount of resources required to do something.

© 2021 Arthur Hoskey. All
rights reserved.

Computational Complexity

Amount of resources required
(time/space are resources)

Computational Complexity Theory

Focused on the complexity of
problems (sorting, searching

etc…). Classifies problems according
to their resource usage.

Analysis of Algorithms

Focused on the complexity of an
explicit algorithm. Given a
specific algorithm what are its

resource requirements.

Sub

Areas

We will do a small amount of

work here today

Comparison of Algorithms

 Some algorithms will perform faster than
others.

 It is important to be able to compare
different algorithms so we can choose the
best one for the problem at hand.

 How can we compare algorithms???

© 2021 Arthur Hoskey. All
rights reserved.

Comparison of Algorithms

 Can we use the actual time (say in
milliseconds) it takes for a program to run
to compare algorithms?

© 2021 Arthur Hoskey. All
rights reserved.

Comparison of Algorithms

 Can we use the actual time (say in
milliseconds) it takes for a program to run
to compare algorithms?

NO. Not a good comparison
1. Computer speeds can vary.
2. If algorithms are run on the
same computer the load that
the OS is dealing with at any
instant in time can vary.

© 2021 Arthur Hoskey. All
rights reserved.

Higher-Level Approach

 We need a higher-level approach to
compare algorithms.

Better Algorithm Comparison
1. Isolate a particular operation that is

fundamental to the algorithm.
2. Then count the number of times that this

operation is performed.

This eliminates variables such as computer speeds
and OS load.

© 2021 Arthur Hoskey. All
rights reserved.

Dictionary Organization Example

 Now we will go over an example of
organizing a dictionary in two different
ways…

© 2021 Arthur Hoskey. All
rights reserved.

Dictionary Organization Example

 A dictionary associates words with definitions.
 Word → Definition.

 For example…

© 2021 Arthur Hoskey. All
rights reserved.

Word Definition

Student A person formally engaged in learning,
especially one enrolled in a school or college.

Computer A programmable electronic device designed to
accept data, perform prescribed mathematical
and logical operations at high speed, and display
the results of these operations. Mainframes,
desktop and laptop computers, tablets, and
smartphones are some of the different types of
computers.

Dictionary Organization Example

Pretend two people are creating a
dictionary and each uses their own
organization scheme to store the entries.

Method 1 – Put the words in alphabetical
order.

Method 2 – Put the words in random
order.

What metric should we use to compare
the two algorithms?

© 2021 Arthur Hoskey. All
rights reserved.

Dictionary Organization Example

Algorithm Comparison

 One operation we could count is the
number of comparisons necessary to
find an element.

 How many entries would we have to "look
at" in the dictionary before we found the
one that we wanted?

© 2021 Arthur Hoskey. All
rights reserved.

Dictionary Organization Example

SMALL GROUP EXERCISE

Pretend two people are writing a dictionary and each
uses their own organization scheme to store the
entries.

Method 1 – Put the words in alphabetical order.

Method 2 – Put the words in random order.

In the worst case, which method is faster when
finding a word’s definition using comparison as the
metric? Why?

Discuss what is happening for each scheme.

© 2021 Arthur Hoskey. All
rights reserved.

Dictionary Organization Example

Method 1 – Put the words in alphabetical order.

Method 2 – Put the words in random order.

Method 1 is faster (find operation).

Another Question

If there were 16 entries in the dictionary and the target
entry is the last one then how many comparisons are
needed in the worst case for each scheme?

© 2021 Arthur Hoskey. All
rights reserved.

Dictionary Organization Example

Method 1 – Put the words in alphabetical order.

Method 2 – Put the words in random order.

Method 1 is faster (find operation).

Another Question

If there were 16 entries in the dictionary and the target
entry is the last one then how many comparisons are
needed in the worst case for each scheme?

ANSWER

Method 1 – Less than 16

Method 2 - 16 Comparisons are needed

© 2021 Arthur Hoskey. All
rights reserved.

Dictionary Organization Example

Method 1 – Put the words in alphabetical order.

Method 2 – Put the words in random order.

 We just compared the algorithms to see which one
does a Find() faster.

What other operation could we compare?

© 2021 Arthur Hoskey. All
rights reserved.

Dictionary Organization Example

Method 1 – Put the words in alphabetical order.

Method 2 – Put the words in random order.

 Add New Entry. Now compare the speed it takes to
add a new entry. This is an Insert() operation.

Which algorithm is faster when inserting?

© 2021 Arthur Hoskey. All
rights reserved.

Dictionary Organization Example

Method 1 – Put the words in alphabetical order.

Method 2 – Put the words in random order.

Which algorithm is faster when inserting?

ANSWER:

 Method 2 is faster in this case (insert
operation). All you have to do is put it at the
end.

Another Question

 What ”extra work” do you have to do to insert data
using the Method 1 algorithm?

© 2021 Arthur Hoskey. All
rights reserved.

Dictionary Organization Example

Method 1 – Put the words in alphabetical order.

Method 2 – Put the words in random order.

 Method 1 requires that you first FIND the insertion
place then you can insert the new entry. You cannot
just put the entry at the end.

© 2021 Arthur Hoskey. All
rights reserved.

Dictionary Organization Example

Method 1 – Put the words in alphabetical order.

Method 2 – Put the words in random order.

 If there were 16 entries how many comparisons
would it take to find the correct insertion place using
the Method 2 algorithm?

© 2021 Arthur Hoskey. All
rights reserved.

Dictionary Organization Example

Method 1 – Put the words in alphabetical order.

Method 2 – Put the words in random order.

 If there were 16 entries how many comparisons
would it take to find the correct insertion place using
the Method 2 algorithm?

ANSWER

 0 comparisons. Just put it at the end.

© 2021 Arthur Hoskey. All
rights reserved.

Performance on Find and Insert
(Method 2)

Performance on Find and Insert (Method 2)

Method 2 – Put the words in random order.

Assuming 16 entries and the target is at the end for a
Find():

© 2021 Arthur Hoskey. All
rights reserved.

Algorithm Runtime

Find() 16 comparisons

Insert() 0 comparisons

Performance on Find and Insert
(Method 2)

Method 2 – Put the words in random order.

Assuming 5000 entries and the target is at the end for a
Find():

© 2021 Arthur Hoskey. All
rights reserved.

Algorithm Runtime

Find() 5000 comparisons

Insert() 0 comparisons

Note

Insert() remains constant no matter how many entries

there are in the dictionary using the random order

organization scheme.

Performance on Find and Insert
(Method 2)

Method 2 – Put the words in random order.

Assuming 5000 entries and the target is at the middle point
for a Find():

© 2021 Arthur Hoskey. All
rights reserved.

Algorithm Runtime

Find() ??? comparisons

Insert() 0 comparisons

Performance on Find and Insert
(Method 2)

Method 2 – Put the words in random order.

Assuming 5000 entries and the target is at the middle point
for a Find():

© 2021 Arthur Hoskey. All
rights reserved.

Algorithm Runtime

Find() 2500 comparisons

Insert() 0 comparisons

Performance on Find and Insert
(Method 2)

Method 2 – Put the words in random order.

Assuming 5000 entries and the target is at the beginning
of the dictionary while performing a Find():

© 2021 Arthur Hoskey. All
rights reserved.

Algorithm Runtime

Find() ??? comparisons

Insert() 0 comparisons

Performance on Find and Insert
(Method 2)

Method 2 – Put the words in random order.

Assuming 5000 entries and the target is at the beginning
of the dictionary while performing a Find():

© 2021 Arthur Hoskey. All
rights reserved.

Algorithm Runtime

Find() 1 comparison

Insert() 0 comparisons

Performance on Find and Insert
(Method 2)

Method 2 – Put the words in random order.

Assume 5000 entries and you do not know where the target
is. What is the average number of comparisons:

© 2021 Arthur Hoskey. All
rights reserved.

Algorithm Runtime

Find() ??? comparisons

Insert() 0 comparisons

Performance on Find and Insert
(Method 2)

Method 2 – Put the words in random order.

Assume 5000 entries and you do not know where the target
is. What is the average number of comparisons:

© 2021 Arthur Hoskey. All
rights reserved.

Algorithm Runtime

Find() 2500 comparisons

Insert() 0 comparisons

Performance on Find and Insert
(Method 2)

Method 2 – Put the words in random order.

Assume you have n entries. Also, assume the target is at
the end. Now how many comparisons are necessary?

© 2021 Arthur Hoskey. All
rights reserved.

Algorithm Runtime

Find() ??? comparisons

Insert() ??? comparisons

Performance on Find and Insert
(Method 2)

Method 2 – Put the words in random order.

Assume you have n entries. Also, assume the target is at
the end. Now how many comparisons are necessary?

© 2021 Arthur Hoskey. All
rights reserved.

Algorithm Runtime

Find() n comparisons

Insert() 0 comparisons

Performance on Find and Insert
(Method 2)

Method 2 – Put the words in random order.

Assume you have n entries and you don’t know where the
target is. What is the average runtime for each?

© 2021 Arthur Hoskey. All
rights reserved.

Algorithm Runtime

Find() ??? comparisons

Insert() ??? comparisons

Performance on Find and Insert
(Method 2)

Method 2 – Put the words in random order.

Assume you have n entries and you don’t know where the
target is. What is the average runtime for each?

© 2021 Arthur Hoskey. All
rights reserved.

Algorithm Runtime

Find() n/2 comparisons

Insert() 0 comparisons

On average you will have to

look through half the entries.

Algorithm Comparison - Big O

Algorithm Comparison uses something called Big O
notation.

Assume you have n entries or data items.

A runtime of O(n) means you have to "look at" each
item in the collection once. n comparisons are required.

So if there are 100 entries then n is 100. If there are
5000 entries then n is 5000.

The number of comparisons will vary depending
on how many items there are in the collection.

© 2021 Arthur Hoskey. All
rights reserved.

Algorithm Comparison - Big O

Assume you have n entries or data items.

O(1) means you have to "look at" one entry (kind
of). It really means the amount of work does
not change.

This is called "constant" time. The number of
things to do remains constant no matter how
many items there are.

IMPORTANT
A O(1) running time will not change no matter
what the value of n is.

© 2021 Arthur Hoskey. All
rights reserved.

Algorithm Comparison - Big O

Big O notation is used as an approximation or
estimate of how long an algorithm will take to
run.

It is not meant to be an exact number.

It is a worst-case estimation.

© 2021 Arthur Hoskey. All
rights reserved.

Calculating Big O

What if we went to buy a car. While buying the car
we also bought a sandwich and a soda while we
were waiting. Assume the following costs of the
items that we just bought.

Approximately how much did we spend?

© 2021 Arthur Hoskey. All
rights reserved.

Item Cost

Car $25000

Sandwich $10

Soda $1

Calculating Big O

What if we went to buy a car. While buying the car
we also bought a sandwich and a soda while we
were waiting. Assume the following costs of the
items that we just bought.

Approximately how much did we spend?
Answer
Approximately $25000

© 2021 Arthur Hoskey. All
rights reserved.

Item Cost

Car $25000

Sandwich $10

Soda $1

Calculating Big O Complexity Class

 When calculating the Big O complexity class for a
function you can "ignore" the small terms.

 You only need to look at the "big" terms.

 Look for the terms that dominate the calculation.

 For example…

© 2021 Arthur Hoskey. All
rights reserved.

Calculating Big O Complexity Class

Find the Big O complexity class for f(n).

f(n) = n + 1 + 1

© 2021 Arthur Hoskey. All
rights reserved.

Terms

Look for the

“largest”

term

Calculating Big O Complexity Class

Find the Big O complexity class for f(n).

f(n) = n + 1 + 1

Answer
f(n) Є O(n)

© 2021 Arthur Hoskey. All
rights reserved.

Look for

the largest

term

The n term dominates the rest of the

equation so you can ignore the 1

terms
Terms

O(n) is the set of all functions where

the n term dominates. The particular

f(n) we show above is a member of

this set of functions.

Calculating Big O Complexity Class

Find the Big O complexity class for f(n).

f(n) = n/2 + 1 + 1

© 2021 Arthur Hoskey. All
rights reserved.

Calculating Big O Complexity Class

Find the Big O complexity class for f(n).

f(n) = n/2 + 1 + 1

Answer
f(n) Є O(n)

© 2021 Arthur Hoskey. All
rights reserved.

Note

You can ignore constants

in equations. The term n/2

is n * ½. The ½ can be

ignored.

Calculating Big O

 What are the run times for the following
operations on an array?

Finding max?
Calculating total of all elements?

© 2021 Arthur Hoskey. All
rights reserved.

Common Big O Complexity Classes

How do some common Big O complexity classes
vary as n increases?

© 2021 Arthur Hoskey. All
rights reserved.

n O(n) O(n2) O(1) O(log2 n)

1

2

4

8

16

32

64

128

256

512

1024

???

Common Big O Complexity Classes

How do some common Big O complexity classes
vary as n increases?

© 2021 Arthur Hoskey. All
rights reserved.

n O(n) O(n2) O(1) O(log2 n)

1 1 1 1 0

2 2 4 1 1

4 4 16 1 2

8 8 64 1 3

16 16 256 1 4

32 32 1024 1 5

64 64 4096 1 6

128 128 16384 1 7

256 256 65536 1 8

512 512 262144 1 9

1024 1024 1048576 1 10

Common Big O Complexity Classes

Problem

Order the columns from "fastest" to "slowest".

© 2021 Arthur Hoskey. All
rights reserved.

n O(n) O(n2) O(1) O(log2 n)

1 1 1 1 0

2 2 4 1 1

4 4 16 1 2

8 8 64 1 3

16 16 256 1 4

32 32 1024 1 5

64 64 4096 1 6

128 128 16384 1 7

256 256 65536 1 8

512 512 262144 1 9

1024 1024 1048576 1 10

Common Big O Complexity Classes

Answer (fastest to slowest)

O(1), O(log n), O(n), O(n2)

© 2021 Arthur Hoskey. All
rights reserved.

n O(1) O(log2 n) O(n) O(n2)

1 1 0 1 1

2 1 1 2 4

4 1 2 4 16

8 1 3 8 64

16 1 4 16 256

32 1 5 32 1024

64 1 6 64 4096

128 1 7 128 16384

256 1 8 256 65536

512 1 9 512 262144

1024 1 10 1024 1048576

Calculating Big O

What is the Big O complexity class for the
following function?

f(n) = 20n + n2 + 1

© 2021 Arthur Hoskey. All
rights reserved.

Which term dominates (grows

the most)?

 Which terms could represent

the car, sandwich, and soda?

Calculating Big O

What is the Big O complexity class for the
following function?

f(n) = 20n + n2 + 1

Answer
f(n) Є O(n2)

© 2021 Arthur Hoskey. All
rights reserved.

Note

n2 is the largest term.

Other terms can be

ignored.

Sandwich Car Soda

Practice – Find Complexity Class

SMALL GROUP EXERCISE

What are the Big O complexity classes of the
following functions:

 f(n) = 3*log n + 100000*3
 f(n) = 6*n + n*n + log n + 2000
 f(n) = n*log n + n + 88

© 2021 Arthur Hoskey. All
rights reserved.

Big O Complexity Classes

 Here is another way of thinking about big O…

© 2021 Arthur Hoskey. All
rights reserved.

Big O Complexity Classes

Put the cars into their appropriate category.

 Race car

 SUV

 Economy car

© 2021 Arthur Hoskey. All
rights reserved.

?

?

?

?

Big O Complexity Classes

Put the cars into their appropriate category.

 Race car

 SUV

 Economy car

© 2021 Arthur Hoskey. All
rights reserved.

Economy

Race

SUV

Economy

Big O Complexity Classes

 In the previous example we placed cars into different
categories.

 There are many cars within each category.

 The cars within each category may have slight differences
but they are very similar and have a lot in common.

 With big O, we are also trying to put things into categories.

 Big O analysis is trying to determine which category a
particular function belongs to (as opposed to a car in the
previous example).

© 2021 Arthur Hoskey. All
rights reserved.

Big O Complexity Classes

Put the functions into their appropriate big O categories.

 O(1)

 O(n)

 O(n2)

© 2021 Arthur Hoskey. All
rights reserved.

?

?

f(n)=3n2+n

f(n)=2n+1

f(n)=200n+1
?

f(n)=10
?

?

f(n)=8n+4

?

f(n)=4n2+2n

Big O Complexity Classes

Put the functions into their appropriate big O categories.

 O(1)

 O(n)

 O(n2)

© 2021 Arthur Hoskey. All
rights reserved.

O(n2)

O(n)

f(n)=3n2+n

f(n)=2n+1

f(n)=200n+1
O(n)

f(n)=10
O(1)

O(n)
f(n)=8n+4

O(n2)

f(n)=4n2+2n

Big O Complexity Classes

 There are many functions within each big O category.

 The functions within each category may have slight
differences but they are very similar and have a lot in
common.

 From the previous example:

 The O(n2) category had the following functions in it:
◦ f(n)=3n2+n

◦ f(n)=4n2+2n

 The O(n) category had the following functions in it:
◦ f(n)=200n+1

◦ f(n)=2n+1

◦ f(n)=8n+4

 The O(n) category had the following functions in it:
◦ f(n)=10

© 2021 Arthur Hoskey. All
rights reserved.

Big O Complexity Classes

 By doing big O analysis and placing functions into general
categories we can determine something about its relative
performance.

 In the car example, if we know a car belongs to the SUV
category, we have some idea about its performance
relative to the other categories. The car is likely faster than
an economy car but slower than race car.

 Similarly with functions, if we know a function belongs to
the O(n) category then we know something about its
performance. It is faster than functions in O(n2) but slower
than functions in O(1).

© 2021 Arthur Hoskey. All
rights reserved.

End of Slides

 End of Slides

© 2021 Arthur Hoskey. All
rights reserved.

	Slide 1: Algorithms
	Slide 2: Important Dates
	Slide 3: Today’s Lecture
	Slide 4: Computational Complexity
	Slide 5: Comparison of Algorithms
	Slide 6: Comparison of Algorithms
	Slide 7: Comparison of Algorithms
	Slide 8: Higher-Level Approach
	Slide 9: Dictionary Organization Example
	Slide 10: Dictionary Organization Example
	Slide 11: Dictionary Organization Example
	Slide 12: Dictionary Organization Example
	Slide 13: Dictionary Organization Example
	Slide 14: Dictionary Organization Example
	Slide 15: Dictionary Organization Example
	Slide 16: Dictionary Organization Example
	Slide 17: Dictionary Organization Example
	Slide 18: Dictionary Organization Example
	Slide 19: Dictionary Organization Example
	Slide 20: Dictionary Organization Example
	Slide 21: Dictionary Organization Example
	Slide 22: Performance on Find and Insert (Method 2)
	Slide 23: Performance on Find and Insert (Method 2)
	Slide 24: Performance on Find and Insert (Method 2)
	Slide 25: Performance on Find and Insert (Method 2)
	Slide 26: Performance on Find and Insert (Method 2)
	Slide 27: Performance on Find and Insert (Method 2)
	Slide 28: Performance on Find and Insert (Method 2)
	Slide 29: Performance on Find and Insert (Method 2)
	Slide 30: Performance on Find and Insert (Method 2)
	Slide 31: Performance on Find and Insert (Method 2)
	Slide 32: Performance on Find and Insert (Method 2)
	Slide 33: Performance on Find and Insert (Method 2)
	Slide 34: Algorithm Comparison - Big O
	Slide 35: Algorithm Comparison - Big O
	Slide 36: Algorithm Comparison - Big O
	Slide 37: Calculating Big O
	Slide 38: Calculating Big O
	Slide 39: Calculating Big O Complexity Class
	Slide 40: Calculating Big O Complexity Class
	Slide 41: Calculating Big O Complexity Class
	Slide 42: Calculating Big O Complexity Class
	Slide 43: Calculating Big O Complexity Class
	Slide 44: Calculating Big O
	Slide 45: Common Big O Complexity Classes
	Slide 46: Common Big O Complexity Classes
	Slide 47: Common Big O Complexity Classes
	Slide 48: Common Big O Complexity Classes
	Slide 49: Calculating Big O
	Slide 50: Calculating Big O
	Slide 51: Practice – Find Complexity Class
	Slide 52: Big O Complexity Classes
	Slide 53: Big O Complexity Classes
	Slide 54: Big O Complexity Classes
	Slide 55: Big O Complexity Classes
	Slide 56: Big O Complexity Classes
	Slide 57: Big O Complexity Classes
	Slide 58: Big O Complexity Classes
	Slide 59: Big O Complexity Classes
	Slide 60: End of Slides

