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Important Dates

 Go over important dates
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Today’s Lecture

 Overview of Big O Notation
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Computational Complexity

 Computational Complexity – Area of Computer Science that 
focuses on the amount of resources required to do something.
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Computational Complexity

Amount of resources required 
(time/space are resources)

Computational Complexity Theory

Focused on the complexity of 
problems (sorting, searching 

etc…). Classifies problems according 
to their resource usage. 

Analysis of Algorithms

Focused on the complexity of an 
explicit algorithm. Given a 
specific algorithm what are its 

resource requirements.

Sub 

Areas

We will do a small amount of 

work here today



Comparison of Algorithms

 Some algorithms will perform faster than 
others.

 It is important to be able to compare 
different algorithms so we can choose the 
best one for the problem at hand.

 How can we compare algorithms???
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Comparison of Algorithms

 Can we use the actual time (say in 
milliseconds) it takes for a program to run 
to compare algorithms?
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Comparison of Algorithms

 Can we use the actual time (say in 
milliseconds) it takes for a program to run 
to compare algorithms?

NO. Not a good comparison 
1. Computer speeds can vary.
2. If algorithms are run on the 
same computer the load that 
the OS is dealing with at any 
instant in time can vary.

© 2021 Arthur Hoskey. All 
rights reserved.



Higher-Level Approach

 We need a higher-level approach to 
compare algorithms.

Better Algorithm Comparison
1. Isolate a particular operation that is 

fundamental to the algorithm.
2. Then count the number of times that this 

operation is performed.

This eliminates variables such as computer speeds 
and OS load.
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Dictionary Organization Example

 Now we will go over an example of 
organizing a dictionary in two different 
ways…
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Dictionary Organization Example

 A dictionary associates words with definitions. 
 Word → Definition.

 For example…
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Word Definition

Student A person formally engaged in learning, 
especially one enrolled in a school or college.

Computer A programmable electronic device designed to 
accept data, perform prescribed mathematical 
and logical operations at high speed, and display 
the results of these operations. Mainframes, 
desktop and laptop computers, tablets, and 
smartphones are some of the different types of 
computers.



Dictionary Organization Example

Pretend two people are creating a 
dictionary and each uses their own 
organization scheme to store the entries.

Method  1 – Put the words in alphabetical 
order.

Method 2 – Put the words in random 
order.

What metric should we use to compare 
the two algorithms?

© 2021 Arthur Hoskey. All 
rights reserved.



Dictionary Organization Example

Algorithm Comparison

 One operation we could count is the 
number of comparisons necessary to 
find an element.

 How many entries would we have to "look 
at" in the dictionary before we found the 
one that we wanted?
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Dictionary Organization Example

SMALL GROUP EXERCISE

Pretend two people are writing a dictionary and each 
uses their own organization scheme to store the 
entries.

Method 1 – Put the words in alphabetical order.

Method 2 – Put the words in random order.

In the worst case, which method is faster when 
finding a word’s definition using comparison as the 
metric? Why? 

Discuss what is happening for each scheme.
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Dictionary Organization Example

Method 1 – Put the words in alphabetical order.

Method 2 – Put the words in random order.

Method 1 is faster (find operation).

Another Question

If there were 16 entries in the dictionary and the target 
entry is the last one then how many comparisons are 
needed in the worst case for each scheme?
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Dictionary Organization Example

Method 1 – Put the words in alphabetical order.

Method 2 – Put the words in random order.

Method 1 is faster (find operation).

Another Question

If there were 16 entries in the dictionary and the target 
entry is the last one then how many comparisons are 
needed in the worst case for each scheme?

ANSWER

Method 1 – Less than 16

Method 2 - 16 Comparisons are needed
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Dictionary Organization Example

Method 1 – Put the words in alphabetical order.

Method 2 – Put the words in random order.

 We just compared the algorithms to see which one 
does a Find() faster.

What other operation could we compare?
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Dictionary Organization Example

Method 1 – Put the words in alphabetical order.

Method 2 – Put the words in random order.

 Add New Entry. Now compare the speed it takes to 
add a new entry. This is an Insert() operation.

Which algorithm is faster when inserting?
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Dictionary Organization Example

Method 1 – Put the words in alphabetical order.

Method 2 – Put the words in random order.

Which algorithm is faster when inserting?

ANSWER:

 Method 2 is faster in this case (insert 
operation). All you have to do is put it at the 
end.

Another Question 

 What ”extra work” do you have to do to insert data 
using the Method 1 algorithm?
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Dictionary Organization Example

Method 1 – Put the words in alphabetical order.

Method 2 – Put the words in random order.

 Method 1 requires that you first FIND the insertion 
place then you can insert the new entry. You cannot 
just put the entry at the end.
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Dictionary Organization Example

Method 1 – Put the words in alphabetical order.

Method 2 – Put the words in random order.

 If there were 16 entries how many comparisons 
would it take to find the correct insertion place using 
the Method 2 algorithm?
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Dictionary Organization Example

Method 1 – Put the words in alphabetical order.

Method 2 – Put the words in random order.

 If there were 16 entries how many comparisons 
would it take to find the correct insertion place using 
the Method 2 algorithm?

ANSWER

 0 comparisons. Just put it at the end.
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Performance on Find and Insert 
(Method 2)

Performance on Find and Insert (Method 2)

Method 2 – Put the words in random order.

Assuming 16 entries and the target is at the end for a 
Find():
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Algorithm Runtime

Find() 16 comparisons

Insert() 0 comparisons



Performance on Find and Insert 
(Method 2)

Method 2 – Put the words in random order.

Assuming 5000 entries and the target is at the end for a 
Find():
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Algorithm Runtime

Find() 5000 comparisons

Insert() 0 comparisons

Note

Insert() remains constant no matter how many entries 

there are in the dictionary using the random order 

organization scheme.



Performance on Find and Insert 
(Method 2)

Method 2 – Put the words in random order.

Assuming 5000 entries and the target is at the middle point 
for a Find():
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Algorithm Runtime

Find() ??? comparisons

Insert() 0 comparisons



Performance on Find and Insert 
(Method 2)

Method 2 – Put the words in random order.

Assuming 5000 entries and the target is at the middle point 
for a Find():
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Algorithm Runtime

Find() 2500 comparisons

Insert() 0 comparisons



Performance on Find and Insert 
(Method 2)

Method 2 – Put the words in random order.

Assuming 5000 entries and the target is at the beginning 
of the dictionary while performing a Find():
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Algorithm Runtime

Find() ??? comparisons

Insert() 0 comparisons



Performance on Find and Insert 
(Method 2)

Method 2 – Put the words in random order.

Assuming 5000 entries and the target is at the beginning 
of the dictionary while performing a Find():
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Algorithm Runtime

Find() 1 comparison

Insert() 0 comparisons



Performance on Find and Insert 
(Method 2)

Method 2 – Put the words in random order.

Assume 5000 entries and you do not know where the target 
is. What is the average number of comparisons:
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Algorithm Runtime

Find() ??? comparisons

Insert() 0 comparisons



Performance on Find and Insert 
(Method 2)

Method 2 – Put the words in random order.

Assume 5000 entries and you do not know where the target 
is. What is the average number of comparisons:
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Algorithm Runtime

Find() 2500 comparisons

Insert() 0 comparisons



Performance on Find and Insert 
(Method 2)

Method 2 – Put the words in random order.

Assume you have n entries. Also, assume the target is at 
the end. Now how many comparisons are necessary?
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Algorithm Runtime

Find() ??? comparisons

Insert() ??? comparisons



Performance on Find and Insert 
(Method 2)

Method 2 – Put the words in random order.

Assume you have n entries. Also, assume the target is at 
the end. Now how many comparisons are necessary?
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Algorithm Runtime

Find() n comparisons

Insert() 0 comparisons



Performance on Find and Insert 
(Method 2)

Method 2 – Put the words in random order.

Assume you have n entries and you don’t know where the 
target is. What is the average runtime for each?
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Algorithm Runtime

Find() ??? comparisons

Insert() ??? comparisons



Performance on Find and Insert 
(Method 2)

Method 2 – Put the words in random order.

Assume you have n entries and you don’t know where the 
target is. What is the average runtime for each?
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Algorithm Runtime

Find() n/2 comparisons

Insert() 0 comparisons

On average you will have to 

look through half the entries.



Algorithm Comparison - Big O

Algorithm Comparison uses something called Big O 
notation.

Assume you have n entries or data items. 

A runtime of O(n) means you have to "look at" each 
item in the collection once. n comparisons are required.

So if there are 100 entries then n is 100. If there are 
5000 entries then n is 5000.

The number of comparisons will vary depending 
on how many items there are in the collection.
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Algorithm Comparison - Big O

Assume you have n entries or data items. 

O(1) means you have to "look at" one entry (kind 
of). It really means the amount of work does 
not change.

This is called "constant" time. The number of 
things to do remains constant no matter how 
many items there are.

IMPORTANT
A O(1) running time will not change no matter 
what the value of n is.
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Algorithm Comparison - Big O

Big O notation is used as an approximation or 
estimate of how long an algorithm will take to 
run.

It is not meant to be an exact number.

It is a worst-case estimation.
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Calculating Big O

What if we went to buy a car. While buying the car 
we also bought a sandwich and a soda while we 
were waiting. Assume the following costs of the 
items that we just bought.

Approximately how much did we spend?
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Item Cost

Car $25000

Sandwich $10

Soda $1



Calculating Big O

What if we went to buy a car. While buying the car 
we also bought a sandwich and a soda while we 
were waiting. Assume the following costs of the 
items that we just bought.

Approximately how much did we spend?
Answer
Approximately $25000
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Item Cost

Car $25000

Sandwich $10

Soda $1



Calculating Big O Complexity Class

 When calculating the Big O complexity class for a 
function you can "ignore" the small terms.

 You only need to look at the "big" terms.

 Look for the terms that dominate the calculation.

 For example…
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Calculating Big O Complexity Class

Find the Big O complexity class for f(n).

f(n) = n + 1 + 1
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Terms

Look for the 

“largest” 

term



Calculating Big O Complexity Class

Find the Big O complexity class for f(n).

f(n) = n + 1 + 1

Answer
f(n) Є O(n)
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Look for 

the largest 

term

The n term dominates the rest of the 

equation so you can ignore the 1 

terms
Terms

O(n) is the set of all functions where 

the n term dominates. The particular 

f(n) we show above is a member of 

this set of functions.



Calculating Big O Complexity Class

Find the Big O complexity class for f(n).

f(n) = n/2 + 1 + 1
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Calculating Big O Complexity Class

Find the Big O complexity class for f(n).

f(n) = n/2 + 1 + 1

Answer
f(n) Є O(n)
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Note

You can ignore constants 

in equations. The term n/2 

is n * ½. The ½ can be 

ignored.



Calculating Big O

 What are the run times for the following 
operations on an array?

Finding max?
Calculating total of all elements?
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Common Big O Complexity Classes

How do some common Big O complexity classes 
vary as n increases?
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n O(n) O(n2) O(1) O(log2 n)

1

2

4

8

16

32

64

128

256

512

1024

???



Common Big O Complexity Classes

How do some common Big O complexity classes 
vary as n increases?
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n O(n) O(n2) O(1) O(log2 n)

1 1 1 1 0

2 2 4 1 1

4 4 16 1 2

8 8 64 1 3

16 16 256 1 4

32 32 1024 1 5

64 64 4096 1 6

128 128 16384 1 7

256 256 65536 1 8

512 512 262144 1 9

1024 1024 1048576 1 10



Common Big O Complexity Classes

Problem

Order the columns from "fastest" to "slowest".
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n O(n) O(n2) O(1) O(log2 n)

1 1 1 1 0

2 2 4 1 1

4 4 16 1 2

8 8 64 1 3

16 16 256 1 4

32 32 1024 1 5

64 64 4096 1 6

128 128 16384 1 7

256 256 65536 1 8

512 512 262144 1 9

1024 1024 1048576 1 10



Common Big O Complexity Classes

Answer (fastest to slowest)

O(1),  O(log n),  O(n),  O(n2)
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n O(1) O(log2 n) O(n) O(n2)

1 1 0 1 1

2 1 1 2 4

4 1 2 4 16

8 1 3 8 64

16 1 4 16 256

32 1 5 32 1024

64 1 6 64 4096

128 1 7 128 16384

256 1 8 256 65536

512 1 9 512 262144

1024 1 10 1024 1048576



Calculating Big O

What is the Big O complexity class for the 
following function?

f(n) = 20n + n2 + 1
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Which term dominates (grows 

the most)?

 Which terms could represent 

the car, sandwich, and soda?



Calculating Big O

What is the Big O complexity class for the 
following function?

f(n) = 20n + n2 + 1

Answer
f(n) Є O(n2)
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Note

n2 is the largest term. 

Other terms can be 

ignored.

Sandwich Car Soda



Practice – Find Complexity Class

SMALL GROUP EXERCISE

What are the Big O complexity classes of the 
following functions:

 f(n) = 3*log n + 100000*3
 f(n) = 6*n + n*n + log n + 2000
 f(n) = n*log n + n + 88
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Big O Complexity Classes

 Here is another way of thinking about big O…
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Big O Complexity Classes

Put the cars into their appropriate category.

 Race car

 SUV

 Economy car
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?

?

?

?



Big O Complexity Classes

Put the cars into their appropriate category.

 Race car

 SUV

 Economy car
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Economy

Race

SUV

Economy



Big O Complexity Classes

 In the previous example we placed cars into different 
categories.

 There are many cars within each category.

 The cars within each category may have slight differences 
but they are very similar and have a lot in common.

 With big O, we are also trying to put things into categories. 

 Big O analysis is trying to determine which category a 
particular function belongs to (as opposed to a car in the 
previous example).
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Big O Complexity Classes

Put the functions into their appropriate big O categories.

 O(1)

 O(n)

 O(n2)
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?

?

f(n)=3n2+n

f(n)=2n+1

f(n)=200n+1
?

f(n)=10
?

?

f(n)=8n+4

?

f(n)=4n2+2n



Big O Complexity Classes

Put the functions into their appropriate big O categories.

 O(1)

 O(n)

 O(n2)
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O(n2)

O(n)

f(n)=3n2+n

f(n)=2n+1

f(n)=200n+1
O(n)

f(n)=10
O(1)

O(n)
f(n)=8n+4

O(n2)

f(n)=4n2+2n



Big O Complexity Classes

 There are many functions within each big O category.

 The functions within each category may have slight 
differences but they are very similar and have a lot in 
common.

 From the previous example:

 The O(n2) category had the following functions in it:
◦ f(n)=3n2+n

◦ f(n)=4n2+2n

 The O(n) category had the following functions in it:
◦ f(n)=200n+1

◦ f(n)=2n+1

◦ f(n)=8n+4

 The O(n) category had the following functions in it:
◦ f(n)=10
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Big O Complexity Classes

 By doing big O analysis and placing functions into general 
categories we can determine something about its relative 
performance.

 In the car example, if we know a car belongs to the SUV 
category, we have some idea about its performance 
relative to the other categories. The car is likely faster than 
an economy car but slower than race car.

 Similarly with functions, if we know a function belongs to 
the O(n) category then we know something about its 
performance. It is faster than functions in O(n2) but slower 
than functions in O(1).
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End of Slides

 End of Slides
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